

- HW //
- Example 3-2, page 57
- Example 3-3, page 59
- Example 3-4, page 59

13

#### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



# Heat content (enthalpy):

- Enthalpy is the heat content of a system, or the amount of energy within a substance, both kinetic and potential.
- The increase in enthalpy,  $\Delta H$ , is equal to the heat absorbed by the system at constant pressure.
- It is also the heat required to increase the internal energy and to perform the work of expansion,

$$Qp = H_2 - H_1 = \Delta H$$

• The first law equation become:

$$\Delta H = \Delta E + P \Delta V$$



### Table: Modified First-Law Equations for Processes Occurring Under Various Conditions

| Specific condition                               |        | Process                  | Common means for establishing the condition                                    | Modification for the first<br>law dE=dq + dw under<br>the stated condition |
|--------------------------------------------------|--------|--------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Constant heat                                    | dq = 0 | Adiabatic                | Insulated vessel                                                               | dE = dw                                                                    |
| Reversible process<br>at constant<br>temperature | dT = 0 | isothermal               | Constant temp bath                                                             | dW = W <sub>max</sub>                                                      |
| Constant volume                                  | dV = 0 | Isometric<br>(isochoric) | Closed vessel of constant volume                                               | dW=-pdV=0 dE=Qv                                                            |
| Constant pressure                                | dP = 0 | isobaric                 | Reaction occurring in an<br>open container at constant<br>atmospheric pressure | dH = Qp<br>dE=dH-Pdv                                                       |

#### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



## **Thermochemistry**

• It is the study that deals with the heat changes accompanying isothermal chemical reactions at constant pressure or volume, from which values of  $\Delta H$  or  $\Delta E$  can be obtained.

### **Heat of Formation**

• For any reaction represented by the chemical equation

$$aA + bB \rightarrow cC + dD$$

• the enthalpy change can be written as

$$\Delta H = \sum_{\rm C} \overline{H}_{\rm products} - \sum_{\rm C} \overline{H}_{\rm reactants}$$
  
$$\Delta H = c\overline{H}_{\rm C} + d\overline{H}_{\rm D} - a\overline{H}_{\rm A} - b\overline{H}_{\rm B}$$



## **Entropy (S) and Disorder**

- Entropy can be defined as the measure of randomness or disorder in the universe.
- Is a quantitative measure of increasing the probability of spontaneous process. From statistical mechanics we had seen that  $\Delta S$  increases during a spontaneous process, so these results give us :
  - $\Delta S$  <0 for non spontaneous processes
  - $\Delta S = 0$  for a system at equilibrium
  - $\Delta S > 0$  for spontaneous processes





# Second law of thermodynamic

- Spontaneous processes always proceeds in the direction of increased the entropy; when the system finally reaches the equilibrium, the net entropy change undergone by the system and its surrounding is equal to zero.
- The isothermal expansion of an ideal gas increases the entropy because of the enhanced number of configurations in a larger volume compared to a smaller one (more disordered)

19

#### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



# The Third law of thermodynamics

At absolute zero, all the modes of motion stops: no vibration, no rotation and no translation), thus

The entropy of a <u>perfect crystal</u>, at <u>absolute zero kelvin</u>, is exactly equal to zero.







### ∆G, Gibbs Free Energy

 $\Delta G = \Delta H - T \Delta S$ 

△G, indicates whether transformation is thermodynamically favourable

> Thermodynamic favorability = direction which results in:  $\Delta G = -ve$ (at constant T and P)

### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



### Case study

Conversion of ice into water at 25°C requires an absorption of heat of 1650 cal/mole, the reaction leads to a more probable arrangement of the molecules; that is, an increased freedom of molecular movement. Hence, the entropy increases, and ΔS = 6 cal/mole deg is sufficiently positive to make ΔG negative, despite the positive value of ΔH.





$$C_2H_5$$
 $CH_2$ 
 $CH_3$ 
 $C_2H_5$ 
 $CH_2$ 
 $CH_3$ 
 $CH_$ 

Fig. 3-7. Reaction of pilocarpinium ion to yield pilocarpine base.

calculate  $\Delta G^{\circ}$  at 25°C. What is the significance of the signs and the magnitudes of  $\Delta H^{\circ}$ ,  $\Delta S^{\circ}$ , and  $\Delta G^{\circ}$ ? Answers:

Pilocarpine

 $\Delta H^{\circ} = 9784 \, \text{cal/mole}$ = 40.94 kJ/mole  $\Delta S^{\circ} = 1.30 \, \text{cal/mole deg}$  $\Delta G^{\circ}_{25^{\circ}} = \Delta H^{\circ} - T\Delta S^{\circ} = 9397 \text{ cal/mole}$ 

### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



## Poly-protic ionization process

 $H_3PO_4 \rightarrow H^+ + H_2PO_4^-$ :  $\Delta H^\circ = -3.1 \text{ kcal/mole } K_1 = 7.5 \times 10^{-3}$ 

 $H_2PO_4^- \to H^+ + HPO_4^{2-}; \quad \Delta H^c = 0.9 \text{ kcal/mole } K_2 = 6.2 \text{ x } 10^{-8}$ 

 $HPO_4^{2-} \rightarrow H^+ + PO_4^{3-}; \quad \Delta H^\circ = 4.5 \text{ kcal/mole } K_3 = 2.1 \text{ x } 10^{-13}$ 



## Pharmaceutical applications of ΔG

- **>** Solubility
- *≻* lonization
- ➤ Diffusion and permeation
- **≻**Complexation
- >Chemical potential
- ➤ Stability of pharmaceutical preparations
- Mixing and separation of multi-phase system
- >Understanding acid base reactions

25

#### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



## **Summary**

- The quantitative relationships among different forms of energy were reviewed and expressed in the three laws of thermodynamics.
- Gibbs free energy and spontaneity of processes were reviewed.
- Different applications of thermodynamic to pharmacy were discussed.

